

Figure 9.11 Plane table solution to a plant location problem. This mechanical model, suggested by Alfred Weber, uses weights to demonstrate the least transport cost point where there are several sources of raw materials. When a weight is allowed to represent the "pull" of raw material and market locations, an equilibrium point is found on the plane table. That point is the location at which all forces balance each other and represents the least-cost plant location.

Figure 9.10 Weber's locational triangle with differing assumptions. (a) With one market, two raw material sources, and a finished product reflecting a 50% material weight loss, production could appropriately be located at S_{l}, S_{2}, or M since each length of haul is the same. In (b) the optimum production point, P, is seen to lie within the triangle, where total transport costs would be less than at corner locations. The exact location of P would depend on the weight-loss characteristics of the two material inputs if only transport charges were involved. P would, of course, be pulled toward the material whose weight is most reduced.

Material Quantities and Transport Rates			
Location	Symbol	Amount Shipped	Transport Rate
Raw Material \# I	RI	6 tons	$\$ 5 /$ ton-mile
Raw Material \#2	R2	7 tons	$\$ 5 /$ ton-mile
Market	M	10 tons	$\$ 7 /$ ton-mile

Example- \#I is I mile from RI, 5 miles from R2, and 4 miles from the Market

What would be three other locations that would be better than the twelve listed above?

